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Abstract—We study the problem of robot navigation in dense
and interactive crowds with environmental constraints such as
corridors and furniture. Previous methods fail to consider all
types of interactions among agents and obstacles, leading to
unsafe and inefficient robot paths. In this article, we leverage a
graph-based representation of crowded and constrained scenarios
and propose a structured framework to learn robot navigation
policies with deep reinforcement learning. We first split the
representations of different components in the environment, and
propose HEIGHT, a novel navigation policy network architecture
with different components to capture heterogeneous interac-
tions among entities through space and time. HEIGHT utilizes
attention mechanisms to prioritize important interactions and
a recurrent network to track changes in the dynamic scene
over time, encouraging the robot to avoid collisions adaptively.
Through extensive simulation and real-world experiments, we
demonstrate that HEIGHT outperforms state-of-the-art baselines
in terms of success, efficiency, and generalization capability when
the densities of humans and obstacles change. More videos are
available at https://sites.google.com/view/crowdnav-height/home.

I. INTRODUCTION

Robots are increasingly prevalent in human-centric environ-
ments. We study robot navigation to a destination without
colliding with humans and obstacles, a crucial ability for
applications such as last-mile delivery and household robots.
For example, Fig. 1 shows a navigation scenario with abundant
subtle interactions among the robot, humans, and obstacles.
These interactions are heterogeneous, dynamic, and difficult to
reason, making navigation in such environments challenging.

Previous works have explored model-based and learning-
based approaches for crowd navigation in an open space
without obstacles [1]–[4]. However, static obstacles such as
furniture, walls, and untraversable regions are common in the
real-world. To this end, other works use groups of circles or
raw images or point clouds to represent both humans and
static obstacles. Nevertheless, their scene representations or
navigation algorithms do not differentiate between dynamic
and static obstacles, and thus the robot has difficulties taking
adaptive strategies to avoid collisions [5]–[8]. To address these
limitations, we ask the following research question: How
can a robot navigation policy represent and reason about
diverse interactions in crowded and constrained environments
to adaptively avoid collisions?
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Fig. 1: A heterogeneous graph aids spatio-temporal reasoning when a
robot navigates in a crowded and constrained environment. The colored
arrows denote robot-human (RH), human-human (HH), and obstacle-agent
(OA) interactions. The opaque arrows are the more important interactions
while the transparent arrows are the less important ones.

To answer this question, we propose a framework that
leverages the heterogeneity of interactions in crowded and
constrained scenarios. First, we split the environment into
human and obstacle representations with information that is
essential to navigation. The split representations are processed
and fed separately into the reinforcement learning (RL)-based
navigation pipeline. Then, inspired by recent breakthroughs
in spatio-temporal (st) networks for crowd navigation [8]–
[11], we decompose the scenario into a heterogeneous spatio-
temporal (st) graph with different types of edges to represent
different types of interactions among the robot, observed and
untracked humans, and observed obstacles, as shown in the
colored arrows in Fig. 1. Finally, we convert the hetero-
geneous st-graph into a HEterogeneous Interaction GrapH
Transformer (HEIGHT), a robot policy network consisting of
different modules to parameterize the heterogeneous spatio-
temporal interactions. In the rapidly changing scenario in
Fig. 1, HEIGHT injects structures to and captures the synergy
between scene representation and network architectures. By
reasoning about the heterogeneous interactions among differ-
ent components through space and time, the robot is able to
avoid collisions and approach its goal in an efficient manner. In
summary, the main contributions of this article are as follows.

1) We propose a split input representation that treats hu-
mans and obstacles separately, enabling structured mod-
eling of crowded and constrained environments.

2) We introduce HEIGHT, a heterogeneous graph trans-
former that models robot-human, human-human, and
obstacle-agent interactions for effective spatio-temporal
reasoning and navigation policy learning.

3) We demonstrate that our method outperforms prior ap-
proaches in simulation and generalizes well to out-of-
distribution environments, with a successful sim-to-real
deployment in challenging scenarios.

https://sites.google.com/view/crowdnav-height/home


Fig. 2: The heterogeneous st-graph and the HEIGHT network architecture. (a) Graph representation of crowd navigation. The robot node is w (pink),
the i-th human node is hi (white), and the obstacle node is o (yellow). HH edges and HH functions are in blue, OA edges and OA functions are in orange,
and RH edges and RH functions are in red. The temporal function is in purple. (b) HEIGHT network. Two attention mechanisms are used to model the HH
and RH interactions. We use MLPs and a concatenation for obstacle-agent interactions, and a GRU for the temporal function. The superscript t that indicates
the timestep and the human mask M is eliminated for clarity.

II. PRELIMINARIES

Problem formulation: We formulate constrained crowd
navigation as a Markov Decision Process (MDP) defined by
⟨S,A,P, R, γ,S0⟩. The robot state wt includes its position,
velocity, heading, and goal. Each detected and untracked
human ht

i includes position and velocity, and static obstacles
ot are represented as a 2D point cloud. The full state is
st = [wt, ot, ht

1, . . . , h
t
n], where n varies by timestep and

is determined by the number of detected humans. At each
timestep, the robot selects an action at = [attrans, a

t
rot] from a

discrete space, where attrans and atrot are the desired translational
and rotational accelerations. The it transitions to st+1 based
on P(·|st, at) while receiving a reward rt. The goal is to
maximize expected return Rt = E[

∑T
i=t γ

i−tri]. Episodes
terminate upon the robot’s goal arrival, collision, or timeout.

State representation: At each timestep t, we decompose
the scene into two components: a set of observed humans
ht
1, . . . , h

t
n and a static obstacle point cloud ot.

• Human representation: Each human is represented by a
low-dimensional state vector extracted via off-the-shelf
detectors [12]–[14]. This abstraction omits appearance
and gait, which are difficult to simulate accurately and
may introduce sim-to-real gaps.

• Obstacle representation: To reduce noise from dynamic
entities and perception artifacts, we generate a 2D point
cloud of static obstacles from a known map and robot
pose using SLAM. This synthetic observation is consis-
tent across simulation and real-world environments and
avoids relying on noisy real-time sensor data.

This scene representation enables the robot to gain a
structured view of the environment that is both generalizable
and robust to domain shifts, and serves as input to our
heterogeneous interaction graph.

Reward function: The reward is the sum of 3 components:

r(st, at) = rmain(s
t, at) + rspin(s

t, at) + rtime. (1)

In Eq. 1, the main reward rmain encourages reaching the

goal and avoiding collisions:

rmain(s
t, at) =


20, if dtgoal ≤ ρrobot

−20, if dtmin ≤ 0

dtmin − 0.25, if 0 < dtmin < 0.25

4(dt−1
goal − dtgoal), otherwise

(2)

where dtgoal is the robot’s distance to the goal, dtmin is the
minimum distance from the robot to any human, and ρrobot
is the robot radius.

The spin penalty rspin discourages excessive rotation:
rspin(s

t, at) = −0.05∥ωt∥22, where ωt is the robot’s rotational
velocity. Finally, a small time penalty rtime encourages faster
task completion: rtime = −0.025.

Intuitively, the robot gets a high reward when it approaches
the goal with a high speed and a short and smooth path, while
maintaining a safe distance from dynamic and static obstacles.

III. METHODOLOGY

We present a structured policy framework for robot naviga-
tion in crowded and constrained environments. Our approach
decomposes the environment into a heterogeneous spatio-
temporal graph (st-graph), capturing different types of interac-
tions among agents and obstacles. This graph structure informs
the design of our transformer-based policy network, which
enables joint spatial and temporal reasoning. An overview of
the st-graph and the network architecture is shown in Fig. 2.

Heterogeneous Spatio-Temporal Graph: In Fig. 2(a), at
each timestep t, we construct a graph Gt = (Vt, Et) where
the node set Vt includes the robot wt, detected humans
ht
1, ..., h

t
n, and a single obstacle node ot representing the static

environment. The edge set Et models three interaction types:
human-human (HH), robot-human (RH), and obstacle-agent
(OA). RH edges model direct interactions that affect robot
decisions, HH edges capture indirect social influence, and
OA edges reflect static environmental constraints. These edge
types are associated with different neural modules and share
parameters within each type to maintain scalability across
varying numbers of agents. To model dynamics over time,
we connect graphs across adjacent timesteps using a temporal



TABLE I: Baseline comparison results with different human and obstacle densities in unseen environments

Environment Method Success↑ Collision↓ Timeout↓ Nav Time↓ Path Len↓
Overall w/ Humans w/ Obstacles

Training distribution
5-9 humans

8-12 obstacles

A∗+ CNN [7] 0.64 0.29 0.28 0.01 0.07 25.72 12.30
DRL-VO [15] 0.59 0.41 0.34 0.07 0.00 21.45 10.36
HEIGHT (ours) 0.88 0.12 0.09 0.03 0.00 18.31 10.34

More crowded
10-14 humans
8-12 obstacles

A∗+ CNN [7] 0.47 0.42 0.39 0.03 0.11 27.33 12.47
DRL-VO [15] 0.50 0.49 0.41 0.09 0.01 22.72 10.26
HEIGHT (ours) 0.78 0.22 0.19 0.03 0.00 19.69 10.39

More constrained
5-9 humans

13-17 obstacles

A∗+ CNN [7] 0.48 0.29 0.23 0.06 0.23 27.28 13.11
DRL-VO [15] 0.55 0.40 0.23 0.07 0.05 21.87 10.22
HEIGHT (ours) 0.84 0.15 0.07 0.08 0.01 18.79 10.65

function that enables reasoning over motion continuity and
partial observability.

HEIGHT Architecture: The network shown in Fig. 2(b)
is derived from the heterogeneous st-graph. HH and RH
interactions are modeled using multi-head attention. HH at-
tention computes the importance of interactions among each
pair of observed humans. Then, the humans are weighted
again with RH attention based on their relevance to the
robot. We apply binary masks to attention scores to handle
varying visibility due to occlusion and limited sensor range.
For obstacles, a 1D-CNN encodes the point cloud into a fixed-
dimensional embedding. Robot states are processed through a
linear layer. All embeddings—from RH attention, the robot,
and obstacles—are concatenated and passed into a GRU to
capture temporal dependencies. The GRU output is fed into
fully connected layers that produce the state value V (st) and
policy logits π(at|st).

Training: The network is trained end-to-end with Proximal
Policy Optimization (PPO) in simulation. At each timestep,
the policy outputs an action and value given the current state.
During training, actions are sampled; during evaluation, the
most likely action is taken. While our method does not require
supervision, it can optionally incorporate imitation learning to
improve sample efficiency and learning stability.

IV. SIMULATION EXPERIMENTS

We evaluate our method in a simulation environment to
answer two core questions: (1) How does our structured scene
representation impact performance in crowded and constrained
environments? (2) How important is the heterogeneous st-
graph design in improving generalization?

Environment and Setup: We use a PyBullet-based simula-
tor in a 12 m×12 m arena with randomized poses for the robot,
static obstacles, and moving humans. Humans are controlled
by ORCA, with a mix of reactive and non-reactive behaviors.
Each episode runs up to 491 steps. Human and obstacle
densities are varied to create a range of difficulty levels,
including challenging out-of-distribution (OOD) scenarios.

We compare HEIGHT with two representative RL-based
baselines that reflect common design choices for scene rep-
resentation and policy architecture:

• A∗+ CNN [7]: A hybrid approach combining A∗ global
planning with a CNN-based local RL policy. The inputs
are a 2D LiDAR point cloud (which implicitly includes

humans), the robot state, and A* waypoints. Humans are
not explicitly detected or distinguished from obstacles.

• DRL-VO [15]: A hybrid method with a pure pursuit
algorithm as the global planner and an RL local planner.
The inputs are an occupancy map (OM) for humans, a
2D LiDAR point cloud, and the robot state. The input
embeddings are fused without graph structures.

We report success rate, collision rate (human and obstacle),
timeout rate, navigation time, and path length as metrics.

Results: Table I summarizes our comparison with prior
RL-based methods under both training and challenging OOD
settings. Our method consistently achieves the highest suc-
cess rate and lowest collision rate across environments. In
particular, HEIGHT demonstrates robust behavior in difficult
scenes with high human or obstacle density. Fig. 3 shows that
HEIGHT selects safer and more efficient paths to reach the
goal and avoid dense human flows and static obstacles.

• Effectiveness of Scene Representation: A∗+ CNN treat
humans and obstacles in a unified way as point clouds.
This leads to ambiguity between dynamic and static ob-
jects, causing more collisions and poor generalization in
unseen environments. The OM representation in DRL-VO
is sparse and high-dimensional, which causes underfitting
with the same training budget. However, since the size of
OM does not change with number of humans, DRL-VO
exhibits stronger generalization in OOD environments.
In contrast to baselines, our split representation—with
separate human detections and static-only obstacle point
clouds—offers clear structural cues that help the policy
generalize across different crowd and layout densities.

• Effectiveness of Heterogeneous st-Graph: Compared to
approaches without an interaction graph, HEIGHT explic-
itly models RH, HH, and OA relationships using separate
modules. This structure allows the policy to reason about
different types of influence: yielding to nearby humans
(RH), anticipating social dynamics (HH), and avoiding
static obstacles and walls (OA). As shown in Fig. 3(f),
this enables the robot to adjust its path to avoid emerging
congestion, maintain safe distances, and exploit efficient
routes in tight spaces—capabilities that are missing in
unstructured baselines.

V. REAL-WORLD EXPERIMENTS

In sim2real transfer, the robot is tested in a hallway and a
lounge in a university building. The policy is directly trans-



Fig. 3: Comparison of different methods in the same testing episode in More Constrained environment. The robot is centered in white circles and its
orientation is denoted by white arrows. More qualitative results can be found in the video attachment and at https://sites.google.com/view/crowdnav-height/home.

Fig. 4: A testing episode of our method in the real Lounge environment. The turtlebot avoids multiple groups of people who pass each other in different
heading directions, avoids the walls and furnitures, and arrives at the goal.

TABLE II: Real-world results in two everyday environments

Environment Method Success↑ Nav Time↓
Hallway

(1–2 humans)
Navigation Stack 0.72 16.71
HEIGHT (ours) 1.00 22.36

Lounge
(1–6 humans)

Navigation Stack 0.83 32.00
HEIGHT (ours) 0.83 30.71

ferred from a low-fidelity PyBullet simulation. Our baseline
is ROS Navigation Stack, which uses A∗ for global planning
and Dynamic Window Approach (DWA) [5] as the local
planner. Both humans and obstacles are treated as groups
of circles in this baseline. In the Hallway environment, the
baseline often times out due to aggressive re-planning and
spinning behavior in tight spaces, while our method succeeds
in all trials. In the Lounge environment, both methods achieve
comparable success, but Navigation Stack takes longer by
relying on stop-and-wait strategies. In contrast, HEIGHT rea-
sons about dynamic and static interactions to generate more
efficient motion. Fig. 4 shows an example episode where the
robot successfully navigates across the lounge while avoiding
multiple groups of pedestrians crossing in different directions.
These results show that our structured policy can reason about

dynamic and static interactions in real time. The successful
deployment highlights the robustness of our input design and
the effectiveness of sim2real learning with low-cost simulation
and simple perception.

VI. CONCLUSION

In this article, we proposed HEIGHT, a structured robot nav-
igation framework in dynamic and constrained environments.
By leveraging the graphical nature and decomposability of
navigation scenarios, we introduce a structured scene repre-
sentation and RL policy network. These allows the robot to
effectively reason about the different geometrics and dynamics
of humans and obstacles, improving its ability to navigate
complex environments. Our simulation experiments show that
the HEIGHT model outperforms other learning-based methods
in terms of collision avoidance, navigation efficiency, and
generalization with varied human and obstacle densities. In
real-world environments, HEIGHT is seamlessly deployed to
everyday indoor navigation scenarios. Our work highlights the
significance of uncovering the inherent structure of complex
problems and injecting these structures into learning frame-
works to solve the problems in a principled manner.

https://sites.google.com/view/crowdnav-height/home
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